55 research outputs found

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Expression of RESP18 in peptidergic and catecholaminergic neurons.

    Full text link
    We examined the expression of regulated endocrine-specific protein of 18-kD (RESP18) in selected peptidergic and catecholaminergic neurons of adult rat brain. In the hypothalamic paraventricular, supraoptic, and accessory nuclei, RESP18 mRNA was highly expressed in neurons immunostained for oxytocin and vasopressin. RESP18 mRNA was also highly expressed in paraventricular nucleus neurons immunostained for corticotropin-releasing hormone, thyrotropin-releasing hormone, and somatostatin. RESP18 mRNA was expressed in POMC cells of the arcuate nucleus, in neuropeptide Y cells of the dorsal tegmental nucleus, lateral reticular nucleus, and hippocampus, and in brainstem catecholaminergic neurons. RESP18 mRNA expression was high in all paraventricular and arcuate neurons, but RESP18 protein was detectable in the perikarya of a subset of these neurons, suggesting an important post-transcriptional component to the regulation of RESP18 expression. RESP18 antisera immunostained perikarya but not axon fibers or terminals. Sub-cellular fractionation of homogenates of several hypothalamic nuclei identified RESP18 protein in fractions enriched in endoplasmic reticulum. The presence of 22- and 24-kD RESP18 isoforms in the neural lobe of the pituitary indicated that some RESP18 protein exited the endoplasmic reticulum. The post-transcriptional regulation of RESP18 expression and localization of RESP18 protein primarily to the endoplasmic reticulum suggests that RESP18 plays a regulatory role in peptidergic neurons

    Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors

    Get PDF
    Sensory systems with high discriminatory power use neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets. However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive rhodopsin 5 (Rh5) from a subset of Drosophila R8 photoreceptor neurons4. Loss of Rh6 leads to a gradual expansion of Rh5 expression into all R8 photoreceptors of the ageing adult retina. The Rh6 feedback signal results in repression of the rh5 promoter and can be mimicked by other Drosophila rhodopsins; it is partly dependent on activation of rhodopsin by light, and relies on Gαq activity, but not on the subsequent steps of the phototransduction cascade. Our observations reveal a thus far unappreciated spectral plasticity of R8 photoreceptors, and identify rhodopsin feedback as an exclusion mechanism
    • …
    corecore